There is general acceptance that climate change, which is the most important challenge facing humanity, is anthropogenic and attributed to fossil fuel consumption. Therefore, improving the performance of our existing energy systems and deploy more renewable energy resources is an urgent issue to be addressed. Geothermal refers to existing of heat energy in deep rock and sedimentary basins. This energy can be used to drive a power turbine to generate electricity. Traditionally, geothermal has been exploited in places with the plentiful hot water at relatively shallow depth. In the light of fact that ground temperature increases with the depth everywhere on the Earth, engineered geothermal systems (EGS) can be installed in any place to exploit the geothermal in generating energy. Unfortunately, the high exploration and drilling costs of boreholes is the main barrier to commerciality of EGS worldwide. In addition, there are technical problems associated with drilling big depth. In oil producing countries such problems can be addressed by utilizing whether active or abandoned oil or gas wells and, consequently, EGS can produce power at profit. The current study presents an analysis of a binary geothermal power generation system for commercial electricity generation in Qatar. For this purpose, two binary cycles are assumed the main difference between them is that the first one is air cooled while the other will be water cooled. The performance of the two cycles and the possibility of improvement has been shown. Economic analysis the power plant shows that the levelized costs of electricity is 3.6US¢/kWh and the pay-back time is less than 8 years.
Keywords: Geothermal; Costs; Cost; Temperature; energy; Oil; Oils; Performance; Cycles;
Full Access to Technical Paper
PDF version for $20.00
Other papers from ISARC