World Mining Congress
The primary motivation underlying the proposal of polygeneration systems for mine sites is to increase the efficient use of natural resources by combining different technologies and energy resources while satisfying energy service demands. For many mineral producers, particularly in Canada’s mining extremes of climate and depth, energy in support of mineral production can be the second largest cost centre after labour. A generic methodology is proposed for the design of energy supply systems in mine sites, based on a search for the minimum discounted cost of energy supplied for all feasible different plant configurations. These configurations can be represented within a connectivity matrix which corresponds to a network representation. A Mixed Integer Programming formulation is set out for the multiperiod synthesis and operational planning problem. This is characterized by i) binary variables for the selection of technologies, ii) integer variables for the determination of the number of units installed, and iii) by continuous variables for the representation of energy and economic flows. Through the integration of particular energy supply strategies matching specific mine circumstances (on-grid, remote, degree days, etc) and consideration of technologies that improve energy efficiency, hitherto not considered new technologies and demand management systems or new perspectives on optimal mine site energy supply can be investigated. Some of these investigations identify the economic conditions through which biomass energy feedstocks should be used, for direct heat production, for gasification and providing for Fischer-Tropsch syndiesel manufacture.
Keywords: energy; Electricity; Costs; Cost; Demand; Storage; Systems; Diesel; Diesels;
Full Access to Technical Paper
PDF version for $20.00
Other papers from World Mining Congress