Process description and aerosol exposures at Vale Canada’s (Inco’s) Copper Cliff nickel refinery

CIM Journal, Vol. 6, No. 3, 2015, pages 168-157

B. R. Conard
BRConard Consulting, Inc., Oakville, Ontario, Canada

http://dx.doi.org/10.15834/cimj.2015.18
Résumé Dans le cadre de la série d’articles décrivant les opérations de nickel chez Vale Canada (anciennement Inco), le présent article cible les opérations de 1973 à ce jour à l’affinerie de nickel de Copper Cliff en Ontario, Canada. Le procédé utilisé à cette usine est la formation de tétracarbonylnickel sous une pression élevée de CO (gaz) et sa décomposition subséquente à des températures plutôt élevées pour produire des granules et des poudres de Ni pur. Un échantillonnage par l’auteur des poussières en aérosol est présenté ainsi que de l’information sur les composés spécifiques de Ni dans les aérosols.
Mots-Clé Affinage du nickel, Inco, poussières en aérosol, tétracarbonylnickel, vapométallurgie
Accés complet à Document technique
Version PDF pour 20,00 $
Autres documents dans CIM Journal, Vol. 6, No. 3, 2015
Recherche
Trier par :  Pertinence
Affichage des résultats 1 - 5
Texte
Publication: CIM Journal
Numéro: 3
Volume: 6
Année: 2015
Texte
Sommaire: The degree of uncertainty associated with a natural diamond resource is important to quantify from the time of discovery through the production lifetime. Data collection occurs during the discovery, exploration, delineation, and production or recovery phases. Quantifying the relationship between data and uncertainty is an important component of project valuation. The value of data is measured as their potential to reduce uncertainty if they are collected. A method is developed using Monte...
Publication: CIM Journal
Auteur(s): J. G. Manchuk, J. Stiefenhofer and M. Thurston, C. V. Deutsch
Mots clés: Diamond exploration, Geostatistics, Kimberlite, Monte Carlo simulation, Resource uncertainty
Numéro: 3
Volume: 6
Année: 2015
Texte
Sommaire: High-risk underwater mining operations necessitate characterizing spatial heterogeneity and resource uncertainty. Local average subdivision is a method of simulating spatial deposit variability inside a cell through a sequence of discretization stages, during which a cell is further subdivided into four or eight cells. New developments are presented to validate simulated deposit models and deal with point measurements of geotechnical and ore-grade properties. This paper illustrates the...
Publication: CIM Journal
Auteur(s): T. Wambeke and M. Alvarez Grima, G. A. Fenton, J. Benndorf, A. Vervoort
Mots clés: Geostatistical simulations, Local average subdivision (LAS), Marine deposit evaluation, Resource uncertainty, Spatial variability, Underwater mining
Numéro: 3
Volume: 6
Année: 2015
Texte
Sommaire: Corrosion of support system components (e.g., bolts, mesh, plates) is a safety and economic concern in underground mines. This paper reports the results of a five-year study wherein corrosion coupons were installed at select locations in participating mines, recovered at regular intervals, analyzed for signs of corrosion, and tested to quantify loss in capacity. Complementary tests were conducted on recovered mesh and friction bolt specimens. The data provide insights into contributing...
Publication: CIM Journal
Auteur(s): J.-F. Dorion, J. Hadjigeorgiou, E. Ghali
Mots clés: Corrosion, Reinforcement systems, Support systems, Underground mines
Numéro: 3
Volume: 6
Année: 2015
Texte
Sommaire: Evaluating resources and reserves requires the reliable modelling of geological domains and their grades. “Multiple point statistics” simulation is a relatively new geostatistical method to generate complex, high-resolution geological models by extracting high-order spatial relations from training images. A method based on combining multiple training images is developed to obtain the correct amount of large-scale continuity and short-scale variability. A calibration process matches the...
Publication: CIM Journal
Auteur(s): D. A. Silva, K. J. Palmer, C. V. Deutsch
Mots clés: Entropy, Geological domains, Geostatistics, Linear opinion pool, Multiple point statistics (MPS), Training image (TI)
Numéro: 3
Volume: 6
Année: 2015
Activé par Coveo Enterprise Search