A Physical Volcanological, Chemostratigraphic, and Petrogenetic Analysis of the Little Falls Member, Tetagouche Group, Bathurst Mining Camp, New Brunswick

Exploration and Mining Geology, Vol. 15, No. 3-4, 2006

K.L. MacLELLAN, D.R. LENTZ, and S.H. McCLENAGHAN

Abstract The Little Falls member of the Nepisiguit Falls Formation is situated in the northern part of the Brunswick Belt of the Bathurst Mining Camp and has been interpreted as the distal equivalent of proximal tuffaceous rocks that host the stratiform Brunswick No. 12 and No. 6 Pb-Zn massive sulfide deposits. It comprises fine-grained, greenish-gray tuffaceous sandstone in the lower part, and coarse-grained, crystal-rich tuffaceous sandstone in the upper part. Petrographic evidence suggests that these rocks have a turbiditic origin. The Little Falls member is underlain by the Vallée Lourdes member, mainly composed of relatively shallow-water calcareous rocks, and is conformably overlain by Mn-rich sedimentary rocks, mainly red argillites that host the Tetagouche Falls Mn-(Fe) deposit. All these rocks are considered to belong to the Nepisiguit Falls Formation, part of the Ordovician Tetagouche Group.

Whole-rock geochemical data from the fine-grained tuffaceous sandstone and coarse-grained tuffaceous sandstone indicate that the two units of the Little Falls member are distinct. Zr and TiO2 contents, and total rare earth element (REE) values are higher in the coarse-grained unit (average Zr/TiO2 = 0.040, average ΣREE = 247 ppm, n = 6) than in the fine-grained unit (average Zr/TiO2 = 0.048, average ΣREE = 158 ppm, n = 17), which can be attributed to the variation in crystal content between the two units. Both units are HREE-enriched and have elevated La/Yb relative to the typical Nepisiguit Falls Formation. Overall, the geochemical data combined with evidence from the bounding units suggest that the Little Falls member was deposited in relatively shallow water, possibly in a near-arc environment. The relationship of volcanic facies within the Nepisiguit Falls Formation and the geochemistry of these facies indicate strongly that fine grained, reworked tuffaceous rocks, regardless of whether they are the distal equivalents of proximal tuffaceous rocks, are not associated with the major ore-bearing horizons of the Bathurst Mining Camp.
Keywords: Physical volcanology, Chemostratigraphy, Petrogenesis, Volcaniclastic resedimentation, Nepisiguit Falls Formation, Bathurst Mining Camp
Résumé Le forage au diamant DDH-B357, situé à 1.5 km au nord du gisement de Sulfures Massifs à Encaissant Volcanique et Sédimentaire (SMEVS) de Zn-Pb-Cu-Ag Brunswick No. 6 recoupe trois horizons exhalatifs au sein des roches volcaniques felsiques diversement altérées des formations de Nepisiguit Falls et de Flat Landing Brook. Ces trois intervalles de formation de fer, impossibles à distinguer pétrographiquement les uns des autres, représentent vraisemblablement des unités sédimentaires hydrothermales cogénétiques sur la base de leur signature géochimique commune: Fe2O3 T = 42.9 ± 10.5 % poids, MnO = 5.4 ± 3.1 % poids, des teneurs élevées en métaux usuels (Zn+Pb = 1999 ± 1091 ppm), un fort enrichissement en composantes exhalatives additionnelles (CaO = 5.3 ± 3.9 % poids; P2O5 = 1.43 ± 1.00 % poids), une signature oxydée (Fe/ Mn = 10 ± 6), ainsi qu’une signature d’éléments immobiles communs (Zr/TiO2 = 0.025 ± 0.007) indicative d’une source pélagique. Les roches volcaniques encaissantes calco-alcalines à transitionnelles peuvent êtres reconnues par leur rapport Zr/TiO2, et à un moindre degré par leur rapport Th/Nb: Formation de Nepisiguit Falls: Zr/TiO2 = 0.053 ± 0.004, Th/Nb = 1.08 ± 0.37; Formation de Flat Landing Brook: Zr/TiO2 = 0.107 ± 0.043, Th/Nb = 0.86 ± 0.17. Une répétition symétrique de la séquence stratigraphique Mur–Formation de Fer–Toit a été observée dans le forage DDH-B357, avec des domaines distincts constitués de roches volcaniques felsiques séparés par les trois formations de fer. La meilleure explication est que le flanc ouest de l’anticlinal Brunswick à plongée sud est affecté par des plis parasites F2, similaires aux zones de charnière contenant les sulfures massifs des mines Brunswick No. 6 et No. 12. La géochimie des formations de fer et la chimiostratigraphie des roches volcaniques felsiques en forage peuvent fournir un outil d’exploration minérale efficace dans les roches structuralement complexes du Camp Minier de Bathurst.